- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Balasubramanian, Ganesh (1)
-
Barker, Rusty (1)
-
Behrens, Dane (1)
-
Chen, Wei (1)
-
Chien, TeYu (1)
-
Giddings, Sarah N (1)
-
Kim, Lauren (1)
-
Kim, Lauren N (1)
-
Levy, Morgan C (1)
-
Lockwood, Brian (1)
-
Merrifield, Mark (1)
-
Meusel, Casey (1)
-
Orescanin, Mara M (1)
-
Rose, Volker (1)
-
Scougale, William_R (1)
-
Sharma, Prince (1)
-
Shirato, Nozomi (1)
-
Strudley, Mark (1)
-
Wieghold, Sarah (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Saltwater intrusion (SWI) into coastal freshwater systems is a growing concern in the face of climate change‐driven sea level rise and hydrologic variability. Saltwater contamination of surface freshwater in the coastal California Pajaro Valley exemplifies this concern, where surface water cannot be diverted for agriculture if it is too saline. Closures at the mouth of the Pajaro River Lagoon, a bar‐built estuary in the Pajaro Valley, are associated with SWI. Closures and SWI are driven by a combination of offshore climate, coastal hydrodynamics, estuarine dynamics, inland hydrology, and infrastructure and management. Here, we describe the Pajaro Valley coastal water system and identify the oceanic and inland hydrologic drivers of SWI using available observational data between 2012 and 2020. We use time series and exploratory statistical analyses of coastal total water levels (TWLs), slough stage and salinity, river discharge, and contextual knowledge from local water managers. We observe that wet season lagoon closure and SWI events follow high oceanic TWLs coupled with low stage and discharge in the inland freshwater network, revealing how both wave and inland flow conditions govern lagoon closures and coincident SWI. This study yields novel empirical findings and a methodology for connecting coastal oceanography, estuarine coupled hydro‐ and morpho‐dynamics, inland hydrology, and water management practices relevant to climate change adaptation in human‐modified coastal water systems.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Kim, Lauren; Scougale, William_R; Sharma, Prince; Shirato, Nozomi; Wieghold, Sarah; Rose, Volker; Chen, Wei; Balasubramanian, Ganesh; Chien, TeYu (, Advanced Materials)Abstract Materials in crystalline form possess translational symmetry (TS) when the unit cell is repeated in real space with long‐ and short‐range orders. The periodic potential in the crystal regulates the electron wave function and results in unique band structures, which further define the physical properties of the materials. Amorphous materials lack TS due to the randomization of distances and arrangements between atoms, causing the electron wave function to lack a well‐defined momentum. High entropy materials provide another way to break the TS by randomizing the potential strength at periodic atomic sites. The local elemental distribution has a great impact on physical properties in high entropy materials. It is critical to distinguish elements at the sub‐nanometer scale to uncover the correlations between the elemental distribution and the material properties. Here, the use of synchrotron X‐ray scanning tunneling microscopy (SX‐STM) with sub‐nm scale resolution in identifying elements on a high entropy alloy (HEA) surface is demonstrated. By examining the elementally sensitive X‐ray absorption spectra with an STM tip to enhance the spatial resolution, the elemental distribution on an HEA's surface at a sub‐nm scale is extracted. These results open a pathway towards quantitatively understanding high entropy materials and their material properties.more » « less
An official website of the United States government
